论文标题
多项式概率程序的自动终止分析
Automated Termination Analysis of Polynomial Probabilistic Programs
论文作者
论文摘要
概率程序的终止行为取决于随机分配的结果。几乎确定的终止(AST)关注的是一个问题,一个程序是否在所有可能的输入上以概率为ober终止。积极的几乎确定的终止(过去)集中在有限的预期步骤中终止。本文提出了一种完全自动化的方法,用于对概率分析的终止分析,而守卫和表达式为多项式表达式的程序。由于证明(积极)AST是不可决定的,因此现有的证明规则通常提供足够的条件。这些条件主要涉及对超级男性的限制。我们考虑文献中的四个证明规则,并通过(p)AST的现有证明规则的概括来扩展这些规则。我们通过有效计算程序变量多项式的渐近界限来自动化所得的证明规则集。这些界限用于确定证明规则的足够条件 - 包括对超级男性的限制。因此,我们的软件工具琥珀可以检查AST,过去以及对大量多项式概率程序的否定,同时与多项式证人完全进行终止推理。实验结果表明了我们广义证明规则的优点,并证明琥珀可以处理其他最先进工具无法触及的概率程序。
The termination behavior of probabilistic programs depends on the outcomes of random assignments. Almost sure termination (AST) is concerned with the question whether a program terminates with probability one on all possible inputs. Positive almost sure termination (PAST) focuses on termination in a finite expected number of steps. This paper presents a fully automated approach to the termination analysis of probabilistic while-programs whose guards and expressions are polynomial expressions. As proving (positive) AST is undecidable in general, existing proof rules typically provide sufficient conditions. These conditions mostly involve constraints on supermartingales. We consider four proof rules from the literature and extend these with generalizations of existing proof rules for (P)AST. We automate the resulting set of proof rules by effectively computing asymptotic bounds on polynomials over the program variables. These bounds are used to decide the sufficient conditions - including the constraints on supermartingales - of a proof rule. Our software tool Amber can thus check AST, PAST, as well as their negations for a large class of polynomial probabilistic programs, while carrying out the termination reasoning fully with polynomial witnesses. Experimental results show the merits of our generalized proof rules and demonstrate that Amber can handle probabilistic programs that are out of reach for other state-of-the-art tools.