论文标题
蜂窝自动机可以减少集体状态计算的内存要求
Cellular Automata Can Reduce Memory Requirements of Collective-State Computing
论文作者
论文摘要
分布式信息处理的各种非古典方法,例如神经网络,ISING模型,储层计算,矢量符号体系结构等,采用集体状态计算的原则。在这种类型的计算中,计算中相关的变量被叠加到单个高维状态矢量(集体状态)中。变量编码使用固定的随机模式,该模式必须在计算过程中存储并保留。在这里,我们表明,具有规则90(CA90)的基本蜂窝自动机对使用随机密集二进制表示的集体计算模型实现了时空权衡,即可以通过运行CA90的计算来交易内存要求。我们研究了CA90的随机行为,特别是随机周期的长度与网格大小之间的关系,以及在初始化噪声存在下CA90如何保留相似性。基于这些分析,我们讨论了如何优化集体状态计算模型,在该模型中,CA90从短种子模式中即时扩展表示形式 - 而不是存储完整的随机模式。使用储层计算和矢量符号体系结构在具体场景中应用和测试CA90扩展。我们的实验结果表明,与传统的集体状态模型相比,具有CA90扩展的集体状态计算的性能类似,其中最初由伪随机数生成器生成随机模式,然后存储在大存储器中。
Various non-classical approaches of distributed information processing, such as neural networks, computation with Ising models, reservoir computing, vector symbolic architectures, and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in a computation are superimposed into a single high-dimensional state vector, the collective-state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. Here we show that an elementary cellular automaton with rule 90 (CA90) enables space-time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns - rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using reservoir computing and vector symbolic architectures. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudo-random number generator and then stored in a large memory.