论文标题

不要解析,插入:基于插入的解码的多种语语义解析

Don't Parse, Insert: Multilingual Semantic Parsing with Insertion Based Decoding

论文作者

Zhu, Qile, Khan, Haidar, Soltan, Saleh, Rawls, Stephen, Hamza, Wael

论文摘要

语义解析是自然语言理解系统的关键组成部分之一。成功的解析将输入话语转化为系统容易理解的动作。已经提出了许多算法来解决此问题,从基于规则的或统计插槽填充系统到基于Shiftreduce的神经解析器。对于复杂的解析任务,最新的方法基于自回旋序列,以直接生成解析。该模型在推理时间缓慢,在O(n)解码步骤中产生解析(n是目标序列的长度)。此外,我们证明了该方法在零拍的跨语性转移学习设置中的性能差。在本文中,我们提出了一个非自动回归解析器,该解析器基于插入变压器来克服这两个问题。我们的方法1)与自回归设置相比,与自回归基线相比,在低于自回归模型的同时,在超过自回归模型的同时,加快解码的速度和2)显着提高了跨语性转移。我们在三个著名的单语数据集上测试了我们的方法:ATIS,SNIPS和TOP。对于交叉舌语语义解析,我们使用Multiatis ++和多语言顶部数据集。

Semantic parsing is one of the key components of natural language understanding systems. A successful parse transforms an input utterance to an action that is easily understood by the system. Many algorithms have been proposed to solve this problem, from conventional rulebased or statistical slot-filling systems to shiftreduce based neural parsers. For complex parsing tasks, the state-of-the-art method is based on autoregressive sequence to sequence models to generate the parse directly. This model is slow at inference time, generating parses in O(n) decoding steps (n is the length of the target sequence). In addition, we demonstrate that this method performs poorly in zero-shot cross-lingual transfer learning settings. In this paper, we propose a non-autoregressive parser which is based on the insertion transformer to overcome these two issues. Our approach 1) speeds up decoding by 3x while outperforming the autoregressive model and 2) significantly improves cross-lingual transfer in the low-resource setting by 37% compared to autoregressive baseline. We test our approach on three well-known monolingual datasets: ATIS, SNIPS and TOP. For cross lingual semantic parsing, we use the MultiATIS++ and the multilingual TOP datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源