论文标题
用于分析具有基准功能优化算法的统计模型
Statistical Models for the Analysis of Optimization Algorithms with Benchmark Functions
论文作者
论文摘要
常见的统计方法,例如假设检验,是提供基准比较的论文中的标准实践。不幸的是,这些方法经常被滥用,例如,没有测试其统计测试假设,也没有控制多个小组比较中的家庭依据,以及其他几个问题。贝叶斯数据分析(BDA)解决了前面提到的许多缺点,但其使用并未在进化计算社区的经验数据分析中广泛传播。本文提供了三个主要贡献。首先,我们激励需要利用贝叶斯数据分析并概述此主题。其次,我们讨论了BDA的实际方面,以确保我们的模型有效并且结果透明。最后,我们提供了五个统计模型,可用于回答多个研究问题。在线附录提供了有关如何执行本文讨论的模型的分析的分步指南,包括统计模型的代码,数据转换以及讨论的表格和数字。
Frequentist statistical methods, such as hypothesis testing, are standard practice in papers that provide benchmark comparisons. Unfortunately, these methods have often been misused, e.g., without testing for their statistical test assumptions or without controlling for family-wise errors in multiple group comparisons, among several other problems. Bayesian Data Analysis (BDA) addresses many of the previously mentioned shortcomings but its use is not widely spread in the analysis of empirical data in the evolutionary computing community. This paper provides three main contributions. First, we motivate the need for utilizing Bayesian data analysis and provide an overview of this topic. Second, we discuss the practical aspects of BDA to ensure that our models are valid and the results transparent. Finally, we provide five statistical models that can be used to answer multiple research questions. The online appendix provides a step-by-step guide on how to perform the analysis of the models discussed in this paper, including the code for the statistical models, the data transformations and the discussed tables and figures.