论文标题

量子错误缓解作为通用误差最小化技术:从NISQ到FTQC时代的应用

Quantum error mitigation as a universal error-minimization technique: applications from NISQ to FTQC eras

论文作者

Suzuki, Yasunari, Endo, Suguru, Fujii, Keisuke, Tokunaga, Yuuki

论文摘要

在易耐故障量子计算(FTQC)的早期,由于量子设备的可扩展性有限以及经典解码单元的计算能力不足,预计可用的代码距离和魔术状态的数量将受到限制。在这里,我们将量子误差校正和缓解量子误差集成到有效的FTQC体系结构中,该体系结构有效地增加了代码距离和$ t $ - 盖特计数,以在广泛的量子计算方案中以恒定采样开销为代价。例如,虽然我们需要$ 10^4 $至$ 10^{10} $逻辑操作,以证明从乐观和悲观的观点中证明量子优势,但我们表明我们可以在每个制度中将所需的物理量子数量减少$ 80 \%\%\%\%\%\%\%和$ 45 \%。从另一个角度来看,当可实现的代码距离达到约11个时,我们的计划允许执行$ 10^3 $倍的逻辑操作。该计划将大大减轻所需的计算开销,并加快FTQC时代的到来。

In the early years of fault-tolerant quantum computing (FTQC), it is expected that the available code distance and the number of magic states will be restricted due to the limited scalability of quantum devices and the insufficient computational power of classical decoding units. Here, we integrate quantum error correction and quantum error mitigation into an efficient FTQC architecture that effectively increases the code distance and $T$-gate count at the cost of constant sampling overheads in a wide range of quantum computing regimes. For example, while we need $10^4$ to $10^{10}$ logical operations for demonstrating quantum advantages from optimistic and pessimistic points of view, we show that we can reduce the required number of physical qubits by $80\%$ and $45\%$ in each regime. From another perspective, when the achievable code distance is up to about 11, our scheme allows executing $10^3$ times more logical operations. This scheme will dramatically alleviate the required computational overheads and hasten the arrival of the FTQC era.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源