论文标题
两部分功能区图的量子力学:完整性,晶格和kronecker系数
Quantum mechanics of bipartite ribbon graphs: Integrality, Lattices and Kronecker coefficients
论文作者
论文摘要
我们在由具有固定数量边缘数量的两部分色带图跨越的希尔伯特空间上定义了可解决的量子机械系统。希尔伯特(Hilbert)空间也是一个联想代数,该代数来自置换组产品。希尔伯特空间代数的存在和结构具有许多后果。代数产品可以根据整数色带重新连接系数表示,用于定义可解决的汉密尔顿人的特征值以对称组元素的归一化特征和脱胶元素为kronecker系数的标准化字符表示,这些元素是kronecker系数的,这些元素是kronecker系数的对称性组构成对称性组的代表。幼年图三倍的Kronecker系数的平方显示出等于色带图晶格中亚晶格的尺寸。这导致回答了对Kronecker系数的组合解释的长期问题。作为探索量子至高无上的途径及其对计算复杂性理论的影响,我们概述了用于检测非衍射Kronecker系数的实验,以实现这些量子系统的假设量子实现/模拟。色带图和Belyi图之间的对应关系导致对这些量子机械系统的解释,该量子机械系统在弦膜世界 - 弦几何形状之间插值。
We define solvable quantum mechanical systems on a Hilbert space spanned by bipartite ribbon graphs with a fixed number of edges. The Hilbert space is also an associative algebra, where the product is derived from permutation group products. The existence and structure of this Hilbert space algebra has a number of consequences. The algebra product, which can be expressed in terms of integer ribbon graph reconnection coefficients, is used to define solvable Hamiltonians with eigenvalues expressed in terms of normalized characters of symmetric group elements and degeneracies given in terms of Kronecker coefficients, which are tensor product multiplicities of symmetric group representations. The square of the Kronecker coefficient for a triple of Young diagrams is shown to be equal to the dimension of a sub-lattice in the lattice of ribbon graphs. This leads to an answer to the long-standing question of a combinatoric interpretation of the Kronecker coefficients. As an avenue to explore quantum supremacy and its implications for computational complexity theory, we outline experiments to detect non-vanishing Kronecker coefficients for hypothetical quantum realizations/simulations of these quantum systems. The correspondence between ribbon graphs and Belyi maps leads to an interpretation of these quantum mechanical systems in terms of quantum membrane world-volumes interpolating between string geometries.