论文标题
循环基团的彩虹解决方案
Rainbow Solutions to the Sidon Equation in Cyclic Groups
论文作者
论文摘要
给定组元素的着色,方程式的彩虹解决方案是一个解决方案,每个元素都分配了不同的颜色。 $ \ mathbb {z} _n $的彩虹号对于方程式$ eq $,表示$ rb(\ mathbb {z} _n,eq)$,是最小数量的颜色$ r $,因此每个精确的$ r $ ro $ - 颜色$ r $ -coloring $ r $ - $ r $ - $ \ m nathbb {z} _n $ c $ _n $ compove $ ex $ equ $ equ $ equ $ equation a raindation $ equation。我们证明,对于$ \ mathbb {z} _p $的每一个精确的$ 4 $ - 颜色,其中$ p \ geq 3 $是Prime,存在着Sidon方程的彩虹解决方案$ x_1+x_1+x_2 = x_3+x_4 $。此外,我们确定Sidon方程的$ \ Mathbb {z} _n $的彩虹数量。
Given a coloring of group elements, a rainbow solution to an equation is a solution whose every element is assigned a different color. The rainbow number of $\mathbb{Z}_n$ for an equation $eq$, denoted $rb(\mathbb{Z}_n,eq)$, is the smallest number of colors $r$ such that every exact $r$-coloring of $\mathbb{Z}_n$ admits a rainbow solution to the equation $eq$. We prove that for every exact $4$-coloring of $\mathbb{Z}_p$, where $p\geq 3$ is prime, there exists a rainbow solution to the Sidon equation $x_1+x_2=x_3+x_4$. Furthermore, we determine the rainbow number of $\mathbb{Z}_n$ for the Sidon equation.