论文标题
神经系统应用的熵因果推断
Entropic Causal Inference for Neurological Applications
论文作者
论文摘要
认知神经科学的最终目标是了解大脑功能组织的机械神经过程。这项研究的关键是了解解剖区域之间的结构和功能连通性的结构。在本文中,我们遵循以前的工作,通过将其各个区域模拟为库拉莫托振荡器来开发大脑的简单动力学模型,其耦合结构由复杂的网络描述。但是,在我们的模拟中而不是生成合成网络中,我们模拟了我们的合成模型,但与已从扩散张量成像(DTI)数据重建的解剖学大脑区域的真实网络相结合。通过使用因因果熵(CSE)定义直接信息流的信息理论方法,我们表明我们可以比流行的相关性或套索回归技术更准确地恢复真实的结构网络。当应用于现实的DTI网络以及随机生成的小世界和Erdös-rényi(ER)网络上的数据时,我们证明了方法的有效性。
The ultimate goal of cognitive neuroscience is to understand the mechanistic neural processes underlying the functional organization of the brain. Key to this study is understanding structure of both the structural and functional connectivity between anatomical regions. In this paper we follow previous work in developing a simple dynamical model of the brain by simulating its various regions as Kuramoto oscillators whose coupling structure is described by a complex network. However in our simulations rather than generating synthetic networks, we simulate our synthetic model but coupled by a real network of the anatomical brain regions which has been reconstructed from diffusion tensor imaging (DTI) data. By using an information theoretic approach that defines direct information flow in terms of causation entropy (CSE), we show that we can more accurately recover the true structural network than either of the popular correlation or LASSO regression techniques. We demonstrate the effectiveness of our method when applied to data simulated on the realistic DTI network, as well as on randomly generated small-world and Erdös-Rényi (ER) networks.