论文标题

对称调谐大容量的圆锥形壳腔,用于斧头搜索

Symmetrically Tuned Large-Volume Conic Shell-Cavities for Axion Searches

论文作者

Kuo, Chao-Lin

论文摘要

在较早的论文中,提出了一类新的薄壳腔,以逃避常规轴心卤素的陡峭频率缩放。在这项后续工作中,我们看到广义的圆锥几何形状可以为这些大容量的CM波腔提供稳健的频率调节。圆锥壳腔的频率定义尺寸在调整过程中对称和均匀地变化,从而将高轴突耦合效率(外形均方)保持到外部螺线管场。进一步表明,这种可调的几何形状不仅限于圆锥。开发了任意体积填充圆锥形壳腔的一般处方,并为创建的数值模型获得了直接解决方案。最大的已实现设计是蜿蜒的“大脑”腔,可在20%的频率范围内进行调谐。该腔的扫描速率比当前一代实验中使用的尺度圆柱腔大三个数量级。扫描率如此大的前景可以激发制造和其他实施技术的研发工作。如果可以满足这些工程挑战,则基于空腔的轴卤素可以在高于几个GHz的频率下保持竞争力。我们建议使用一系列脑腔,在20 GHz(〜80 $μ$ eV)处提出实验构型,并将其与其他建议的类似频率进行比较。

In an earlier paper, a new class of thin-shell cavities were proposed to evade the steep frequency scaling of conventional axion haloscopes. In this follow-up work, we see that a generalized conic geometry enables robust frequency-tuning for these large-volume cm-wave cavities. The frequency-defining dimension of a conic shell-cavity changes symmetrically and uniformly during tuning, maintaining a high axion coupling efficiency (the form factor) to an external solenoid field. It is further shown that such tunable geometry is not restricted to circular cones. A general prescription for arbitrary volume-filling conic shell-cavities is developed and direct solutions are obtained for the created numerical models. The largest of the realized designs is a meandering "brain" cavity that is tunable over a frequency range of 20%. The scan rate of this cavity is three orders of magnitude larger than that of a scaled cylindrical cavity used in the current generation experiments. The prospects for such a large improvement in the scan rate should motivate R & D efforts in fabrication and other implementation techniques. If these engineering challenges can be met, cavity-based axion haloscopes can stay competitive at frequencies higher than a few GHz. We propose an experimental configuration at 20 GHz (~ 80 $μ$eV) using an array of brain cavities and compare it with other proposals for similar frequencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源