论文标题

通过Argmin区分学习二进制决策树

Learning Binary Decision Trees by Argmin Differentiation

论文作者

Zantedeschi, Valentina, Kusner, Matt J., Niculae, Vlad

论文摘要

我们解决了学习二进制决策树的问题,该二进制决策树将数据划分为某些下游任务。我们建议使用Argmin分化同时学习离散参数(即,对于树遍历和节点修剪)和连续参数(即,对于树拆分函数和预测功能)。我们这样做是通过稀疏放松离散参数的混合企业程序,以使渐变通过程序传到连续参数。我们得出定制的算法,以有效计算前向和向后通过。这意味着我们的树学习过程可以用作任意深网中的(隐式)层,并且可以通过任意损失功能进行优化。我们证明我们的方法会在监督和无监督的环境中产生与现有的单树和合奏方法竞争的二进制树。此外,除了贪婪的方法(没有竞争精度)之外,我们的方法比与我们比较的所有其他树木学习基线要快。复制结果的代码可在https://github.com/vzantedeschi/latenttrees上获得。

We address the problem of learning binary decision trees that partition data for some downstream task. We propose to learn discrete parameters (i.e., for tree traversals and node pruning) and continuous parameters (i.e., for tree split functions and prediction functions) simultaneously using argmin differentiation. We do so by sparsely relaxing a mixed-integer program for the discrete parameters, to allow gradients to pass through the program to continuous parameters. We derive customized algorithms to efficiently compute the forward and backward passes. This means that our tree learning procedure can be used as an (implicit) layer in arbitrary deep networks, and can be optimized with arbitrary loss functions. We demonstrate that our approach produces binary trees that are competitive with existing single tree and ensemble approaches, in both supervised and unsupervised settings. Further, apart from greedy approaches (which do not have competitive accuracies), our method is faster to train than all other tree-learning baselines we compare with. The code for reproducing the results is available at https://github.com/vzantedeschi/LatentTrees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源