论文标题
在精制网格上不稳定的对流扩散问题的指数时间集成器
Exponential time integrators for unsteady advection-diffusion problems on refined meshes
论文作者
论文摘要
在精制网格上以对流为主导的对流扩散问题的时间整合可能是一项具有挑战性的任务,因为局部改进可能会导致严重的时间步长限制,而标准的隐式时间步进通常几乎不适合治疗对流术语。我们表明,在这种情况下,指数时间集成器可以是一个有效但概念上简单的选择。我们的比较包括三个指数积分器和一个常规方案,即两阶段的Rosenbrock方法ROS2,它一直是解决对流扩散问题的流行替代方法。
Time integration of advection dominated advection-diffusion problems on refined meshes can be a challenging task, since local refinement can lead to a severe time step restriction, whereas standard implicit time stepping is usually hardly suitable for treating advection terms. We show that exponential time integrators can be an efficient, yet conceptually simple, option in this case. Our comparison includes three exponential integrators and one conventional scheme, the two-stage Rosenbrock method ROS2 which has been a popular alternative to splitting methods for solving advection-diffusion problems.