论文标题
部分密度函数的渐近函数沿平滑亚变量消失
Asymptotics of partial density function vanishing along smooth subvariety
论文作者
论文摘要
我们研究了沿固定平滑的亚种的高阶消失到高阶的近形截面相关的部分密度函数的渐近性。假设局部圆环 - 行动不变性,我们描述了禁止区域,从而推广了罗斯·塞格的结果。
We study the asymptotic of the partial density function associated to holomorphic section of a postive line bundle vanishing to high orders along a fixed smooth subvariety. Assuming local torus-action-invariance, we describe the forbidden region, generalizing the result of Ross-Singer.