论文标题
犬和人室性组织的数学模型中的螺旋波和滚动波动力学,钾和钙电流变化
Spiral- and scroll-wave dynamics in mathematical models for canine and human ventricular tissue with varying Potassium and Calcium currents
论文作者
论文摘要
我们在心室组织的数学模型中进行了一项系统的直接数量模拟研究,螺旋和卷轴波动力学对$ g_ {kr} $的依赖性,延迟整流性整流器钾电流的最大电导率($ i_ {kr} $)以及当前$γ_{CAO} $} $} $} $} $} $ i_ {cal} $用于L型钙 - 电流通道,使用犬和人类模型,在正方形和解剖学上逼真的,整个通用模拟域中。我们使用带有纤维取向细节的心室几何形状,并采用生理上现实的模型为犬室心肌细胞。我们将自己限制在HRD模型参数状态下,该参数态度不会因为其他经过良好研究的原因(例如非常尖锐的动作 - 持续性 - 固定率(APDR)曲线)或去极化后的早期(EADS)在单细胞水平上产生螺旋和滚动波不稳定性。我们发现,螺旋或滚动波动力学主要受到$ i_ {cal} $和$ i_ {kr} $的同时改变,而不是受这些电流中任何一种的变化;平面。在3D域中,域的几何形状支持滚动波的限制,并使它们与2D域中的螺旋波对应物相比更稳定。我们还对HRD结果进行了比较,其与人类室里TP06模型的对应物进行了比较,并发现了重要的差异。在这两种模型中,要进行过渡(从断波到稳定的滚动状态,反之亦然),我们必须同时增加$ i_ {kr} $,并减少$ i_ {cal} $;仅修改其中一种水流就不足以实现这种过渡。
We conduct a systematic,direct-numerical-simulation study,in mathematical models for ventricular tissue,of the dependence of spiral-and scroll-wave dynamics on $G_{Kr}$, the maximal conductance of the delayed rectifier Potassium current($I_{Kr}$) channel,and the parameter $γ_{Cao}$,which determines the magnitude and shape of the current $I_{CaL}$ for the L-type calcium-current channel,in both square and anatomically realistic,whole-ventricle simulation domains using canine and human models. We use ventricular geometry with fiber-orientation details and employ a physiologically realistic model for a canine ventricular myocyte. We restrict ourselves to an HRD-model parameter regime, which does not produce spiral- and scroll-wave instabilities because of other,well-studied causes like a very sharp action-potential-duration-restitution (APDR) curve or early after depolarizations(EADs) at the single-cell level. We find that spiral- or scroll-wave dynamics are affected predominantly by a simultaneous change in $I_{CaL}$ and $I_{Kr}$,rather than by a change in any one of these currents;other currents do not have such a large effect on these wave dynamics in this parameter regime of the HRD model.We obtain stability diagrams in the $G_{Kr} -γ_{Cao}$ plane.In the 3D domain,the geometry of the domain supports the confinement of the scroll waves and makes them more stable compared to their spiral-wave counterparts in 2D domain. We have also carried out a comparison of our HRD results with their counterparts for the human-ventricular TP06 model and have found important differences. In both these models,to make a transition,(from broken-wave to stable-scroll states or vice versa) we must simultaneously increase $I_{Kr}$ and decrease $I_{CaL}$;a modification of only one of these currents is not enough to effect this transition.