论文标题
常规多边形的平铺,右三角形相似
Tiling of regular polygon with similar right triangles
论文作者
论文摘要
瓷砖是多边形分解为有限的许多非重叠三角形的分解。我们证明,如果常规n gon,$ n \ geq 5 $,$ n \ neq 28 $可以用相似的右三角形铺有瓷砖,那么这些三角形的角度之一就在$ \ left \ left \ {\fracπ{n}中, {6}+\ frac {2π} {3n} \ right \} $。 M.Laczkovich和B. szegedy先前获得了一些相关的结果。
A tiling is a decomposition of a polygon into finitely many non-overlapping triangles. We prove that if a regular n-gon, $n \geq 5$, $n \neq 28$, can be tiled with similar right triangles, then one of the angles of these triangles is in $\left\{\fracπ{n},\frac{2π}{n}, \fracπ {6}+\frac{2π}{3n}\right\}$. Some related results were previously obtained by M.Laczkovich and B. Szegedy.