论文标题

SDMTL:3D人体运动预测的半耦合多层次轨迹学习

SDMTL: Semi-Decoupled Multi-grained Trajectory Learning for 3D human motion prediction

论文作者

Liu, Xiaoli, Yin, Jianqin

论文摘要

预测未来的人类运动对于智能机器人在现实世界中与人类互动至关重要,并且人类运动具有多晶格的本质。但是,大多数现有的工作要么通过固定模式隐式建模多粒性信息,要么着重于建模单个粒度,因此很难很好地捕获这种性质以进行准确的预测。相比之下,我们提出了一个新型的端到端网络,半耦合的多层次轨迹学习网络(SDMTL),以预测未来的姿势,该姿势不仅可以灵活地捕获丰富的多元轨迹信​​息,而且还汇总了多个晶格信息以进行预测。具体而言,我们首先引入了脑启发的半脱落运动敏感的编码模块(BSME),以半耦合方式有效地捕获时空特征。然后,我们捕获了多个晶格的运动轨迹的时间动力学,包括细粒度和粗粒度。我们使用BSMES层次学习多层次的轨迹信息,并通过在每个粒度上收集BSMES的输出并沿运动轨迹应用时间汇报,从而进一步捕获每个粒度的时间进化方向的信息。接下来,可以通过加权求和方案汇总多晶格的信息,从而进一步增强捕获的运动动力学。最后,包括人类360万和CMU-mocap在内的两个基准的实验结果表明,我们的方法实现了最新的性能,证明了我们提出的方法的有效性。如果接受纸张,则该代码将可用。

Predicting future human motion is critical for intelligent robots to interact with humans in the real world, and human motion has the nature of multi-granularity. However, most of the existing work either implicitly modeled multi-granularity information via fixed modes or focused on modeling a single granularity, making it hard to well capture this nature for accurate predictions. In contrast, we propose a novel end-to-end network, Semi-Decoupled Multi-grained Trajectory Learning network (SDMTL), to predict future poses, which not only flexibly captures rich multi-grained trajectory information but also aggregates multi-granularity information for predictions. Specifically, we first introduce a Brain-inspired Semi-decoupled Motion-sensitive Encoding module (BSME), effectively capturing spatiotemporal features in a semi-decoupled manner. Then, we capture the temporal dynamics of motion trajectory at multi-granularity, including fine granularity and coarse granularity. We learn multi-grained trajectory information using BSMEs hierarchically and further capture the information of temporal evolutional directions at each granularity by gathering the outputs of BSMEs at each granularity and applying temporal convolutions along the motion trajectory. Next, the captured motion dynamics can be further enhanced by aggregating the information of multi-granularity with a weighted summation scheme. Finally, experimental results on two benchmarks, including Human3.6M and CMU-Mocap, show that our method achieves state-of-the-art performance, demonstrating the effectiveness of our proposed method. The code will be available if the paper is accepted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源