论文标题

高级辍学:贝叶斯辍学优化的无模型方法

Advanced Dropout: A Model-free Methodology for Bayesian Dropout Optimization

论文作者

Xie, Jiyang, Ma, Zhanyu, Lei, and Jianjun, Zhang, Guoqiang, Xue, Jing-Hao, Tan, Zheng-Hua, Guo, Jun

论文摘要

由于缺乏数据,在深神经网络(DNNS)的实际应用中存在过度拟合。我们提出了一种无模型方法的高级辍学方法,以减轻过度拟合并改善DNN的性能。高级辍学技术应用于PROAMETRIC PRIC,应用于无模型易于实现的分布,并适应性地调整了辍学率。具体而言,分布参数通过随机梯度变异贝叶斯进行优化,以进行端到端训练。我们使用各种基本模型评估了七个计算机视觉数据集(五个小规模数据集和两个大规模数据集)上九种辍学技术的高级辍学技术的有效性。高级辍学率优于所有数据集上的所有推荐技术。我们进一步比较了有效性比率,并发现高级辍学率在大多数情况下都达到了最高的效果。接下来,我们对辍学率特征进行了一系列分析,包括自适应辍学率的收敛,辍学蒙版的分布以及与辍学率产生的比较而没有明确的分布。另外,评估和确认预防过度拟合的能力。最后,我们将高级辍学的应用扩展到不确定性推理,网络修剪,文本分类和回归。提出的高级辍学也优于相应的推荐方法。代码可在https://github.com/pris-cv/advanceddropout上找到。

Due to lack of data, overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs). We propose advanced dropout, a model-free methodology, to mitigate overfitting and improve the performance of DNNs. The advanced dropout technique applies a model-free and easily implemented distribution with parametric prior, and adaptively adjusts dropout rate. Specifically, the distribution parameters are optimized by stochastic gradient variational Bayes in order to carry out an end-to-end training. We evaluate the effectiveness of the advanced dropout against nine dropout techniques on seven computer vision datasets (five small-scale datasets and two large-scale datasets) with various base models. The advanced dropout outperforms all the referred techniques on all the datasets.We further compare the effectiveness ratios and find that advanced dropout achieves the highest one on most cases. Next, we conduct a set of analysis of dropout rate characteristics, including convergence of the adaptive dropout rate, the learned distributions of dropout masks, and a comparison with dropout rate generation without an explicit distribution. In addition, the ability of overfitting prevention is evaluated and confirmed. Finally, we extend the application of the advanced dropout to uncertainty inference, network pruning, text classification, and regression. The proposed advanced dropout is also superior to the corresponding referred methods. Codes are available at https://github.com/PRIS-CV/AdvancedDropout.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源