论文标题
使用重量夸克量子动力学的底部抑制和椭圆流
Bottomonium suppression and elliptic flow using Heavy Quarkonium Quantum Dynamics
论文作者
论文摘要
我们介绍了一个称为重夸克量子动力学(HQQD)的框架,该框架可用于计算使用实时量子量子进化的夸克 - 胶质等离子体中重夸克尼亚繁殖的重夸克尼亚的动态抑制。使用HQQD,我们使用现实的中等复合物值的潜在电位对Schrödinger方程进行大量实时解决方案。我们采样了200万夸克尼亚波数据包轨迹,并使用HQQD通过QGP进化,以获得其生存概率。使用三个不同的HQQD模型参数集执行计算,以估算我们的系统不确定性。考虑到最终状态进料后,我们将结果与现有的实验数据进行了比较,以抑制底池状态的抑制和椭圆流,发现HQQD预测与$ r_ {aa} $的可用数据是很好的一致性,该数据是$ n _ {\ rm part} $的函数,$ n _ {\ rm part} $ and $ p_t $在$ \ sqrt $ \ sqrt $} $ {在各个州的$ v_2 $的情况下,我们发现$υ(1s)$抑制的路径长度依赖性导致$υ(1s)$的$ V_2 $相当小。我们预测$ 10 { - } 90 $ \%中心级的$υ(1s)$的集成椭圆流,现在包括$ v_2 [υ(1s)$ = 0.003 $ = 0.003 $ \ pm $ 0.0007 $ 0.0007 $ \ pm \ pm \,^0.0006} {0.0006} _ {0.0006} _.0013}我们还发现,由于它们的抑制增加,激发的底池状态具有较大的椭圆流。基于此观察,我们对$ v_2 [υ(2s)] $和$ v_2 [υ(3S)] $进行预测,作为中心性和横向动量的函数。
We introduce a framework called Heavy Quarkonium Quantum Dynamics (HQQD) which can be used to compute the dynamical suppression of heavy quarkonia propagating in the quark-gluon plasma using real-time in-medium quantum evolution. Using HQQD we compute large sets of real-time solutions to the Schrödinger equation using a realistic in-medium complex-valued potential. We sample 2 million quarkonia wave packet trajectories and evolve them through the QGP using HQQD to obtain their survival probabilities. The computation is performed using three different HQQD model parameter sets in order to estimate our systematic uncertainty. After taking into account final state feed down we compare our results to existing experimental data for the suppression and elliptic flow of bottomonium states and find that HQQD predictions are good agreement with available data for $R_{AA}$ as a function of $N_{\rm part}$ and $p_T$ collected at $\sqrt{s_{\rm NN}} =$ 5.02 TeV. In the case of $v_2$ for the various states, we find that the path-length dependence of $Υ(1s)$ suppression results in quite small $v_2$ for $Υ(1s)$. Our prediction for the integrated elliptic flow for $Υ(1s)$ in the $10{-}90$\% centrality class, which now includes an estimate of the systematic error, is $v_2[Υ(1s)]$ = 0.003 $\pm$ 0.0007 $\pm\,^{0.0006}_{0.0013}$. We also find that, due to their increased suppression, excited bottomonium states have a larger elliptic flow. Based on this observation we make predictions for $v_2[Υ(2s)]$ and $v_2[Υ(3s)]$ as a function of centrality and transverse momentum.