论文标题

过去:通过深度学习对卫星发射机的物理层身份验证

PAST-AI: Physical-layer Authentication of Satellite Transmitters via Deep Learning

论文作者

Oligeri, Gabriele, Raponi, Simone, Sciancalepore, Savio, Di Pietro, Roberto

论文摘要

由于深度学习分类算法所引入的性能提升,物理层的安全性正在恢复研究界的牵引力。对于通过无线电指纹识别的无线通信中的发件人身份验证尤其如此。但是,以前的研究工作主要集中在地面无线设备上,而据我们所知,以前的工作都没有考虑到卫星发射器。卫星场景通常具有挑战性,因为除其他外,卫星无线电传感器具有非标准电子设备(通常是老化的,专门为恶劣的条件设计)。此外,对于低地球轨道(LEO)卫星(就像我们在本文中的重点一样),指纹识别任务非常困难,因为它们的轨道距离地球约800公里,速度约为25,000 km/h,从而使接收器具有独特的衰减和下降特征。在本文中,我们提出了过去的AI,这是一种使用高级AI解决方案来验证的方法,该方法是通过指纹识别其IQ样品来验证Leo卫星的。我们的方法对实际数据(超过100m I/Q样品)进行了测试,从鸢尾卫星星座上进行的广泛测量活动收集,持续589小时。结果令人惊讶:我们证明,可以成功地采用卷积神经网络(CNN)和自动编码器(如果正确校准)来验证卫星传感器,具体率介于0.8到1之间,具体范围为0.8至1,具体取决于先前的假设。拟议的方法论,已实现的结果以及提供的见解,除了与我们公开可用的数据集相关联时,除了有趣的情况下,还将为该地区的未来研究铺平道路。

Physical-layer security is regaining traction in the research community, due to the performance boost introduced by deep learning classification algorithms. This is particularly true for sender authentication in wireless communications via radio fingerprinting. However, previous research efforts mainly focused on terrestrial wireless devices while, to the best of our knowledge, none of the previous work took into consideration satellite transmitters. The satellite scenario is generally challenging because, among others, satellite radio transducers feature non-standard electronics (usually aged and specifically designed for harsh conditions). Moreover, the fingerprinting task is specifically difficult for Low-Earth Orbit (LEO) satellites (like the ones we focus in this paper) since they orbit at about 800Km from the Earth, at a speed of around 25,000Km/h, thus making the receiver experiencing a down-link with unique attenuation and fading characteristics. In this paper, we propose PAST-AI, a methodology tailored to authenticate LEO satellites through fingerprinting of their IQ samples, using advanced AI solutions. Our methodology is tested on real data -- more than 100M I/Q samples -- collected from an extensive measurements campaign on the IRIDIUM LEO satellites constellation, lasting 589 hours. Results are striking: we prove that Convolutional Neural Networks (CNN) and autoencoders (if properly calibrated) can be successfully adopted to authenticate the satellite transducers, with an accuracy spanning between 0.8 and 1, depending on prior assumptions. The proposed methodology, the achieved results, and the provided insights, other than being interesting on their own, when associated to the dataset that we made publicly available, will also pave the way for future research in the area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源