论文标题

基于从4D PC-MRI数据提取的形态和血液动力学参数的心脏队列分类

Cardiac Cohort Classification based on Morphologic and Hemodynamic Parameters extracted from 4D PC-MRI Data

论文作者

Niemann, Uli, Neog, Atrayee, Behrendt, Benjamin, Lawonn, Kai, Gutberlet, Matthias, Spiliopoulou, Myra, Preim, Bernhard, Meuschke, Monique

论文摘要

对心血管系统的准确评估和心血管疾病(CVD)的预测至关重要。测量的心血流量数据提供了有关患者特异性血液动力学的见解,其中已经开发了许多专门的技术来视觉探索此类数据集,以更好地了解形态和血液动力学条件对CVD的影响。但是,缺乏机器学习方法的技术,这些技术允许对CVD的人和患者进行基于功能的分类。在这项工作中,我们研究了从主动脉中测得的血流数据中提取的形态和血液动力学特征的潜力,以分类心脏健康的志愿者和双质主动脉瓣(BAV)的患者。此外,我们研究是否有特征可以对男性和女性进行分类以及较老的心脏健康志愿者和BAV患者。我们提出了一个数据分析管道,以分类心脏状态,包括特征选择,模型训练和超参数调整。在我们的实验中,我们使用几种特征选择方法和分类算法来训练健康的亚组和BAV患者的单独模型。我们报告了分类性能并研究形态和血液动力学特征在定义组的分类方面的预测能力。最后,我们确定最佳模型的关键功能。

An accurate assessment of the cardiovascular system and prediction of cardiovascular diseases (CVDs) are crucial. Measured cardiac blood flow data provide insights about patient-specific hemodynamics, where many specialized techniques have been developed for the visual exploration of such data sets to better understand the influence of morphological and hemodynamic conditions on CVDs. However, there is a lack of machine learning approaches techniques that allow a feature-based classification of heart-healthy people and patients with CVDs. In this work, we investigate the potential of morphological and hemodynamic characteristics, extracted from measured blood flow data in the aorta, for the classification of heart-healthy volunteers and patients with bicuspid aortic valve (BAV). Furthermore, we research if there are characteristic features to classify male and female as well as older heart-healthy volunteers and BAV patients. We propose a data analysis pipeline for the classification of the cardiac status, encompassing feature selection, model training and hyperparameter tuning. In our experiments, we use several feature selection methods and classification algorithms to train separate models for the healthy subgroups and BAV patients. We report on classification performance and investigate the predictive power of morphological and hemodynamic features with regard to the classification of the defined groups. Finally, we identify the key features for the best models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源