论文标题

数值半径不平等的一些改进

Some refinements of numerical radius inequalities

论文作者

Heydarbeygi, Zahra, Amyari, Maryam, Khanehgir, Mahnaz

论文摘要

在本文中,我们在$ \ frac {1} {2} {2} \ | a \ |中为第二个不等式提供了一些改进。 \ leq w(a)\ leq \ | a \ | $,其中$ a \ in B(h)$。特别是,如果$ a $是通过使用Kantorovich Constant $ k(\ cdot,\ cdot)$来完善年轻不平等的不平等,我们表明$ w(a)\ leq \ leq \ dfrac {1} {\ displayStyle x \ | = 1}}ζ(x)} \ | | a |+| a^{*} | \ | \ leq \ dfrac {1} {2} \ | | a |+| a^*| \ | $,其中$ζ(x)= k(\ frac {\ langle | a | a | x,x \ rangle} {\ langle | a^{*} | x,x,x \ rangle},2) λ\ leq 1 $。我们还为经典的数值半径功率不等式提供了反向 对于$ n = 2 $的任何操作员$ a \ in B(h)$中的$ a \。

In this paper, we give some refinements for the second inequality in $\frac{1}{2}\|A\| \leq w(A) \leq \|A\|$, where $A\in B(H)$. In particular, if $A$ is hyponormal by refining the Young inequality with the Kantorovich constant $K(\cdot, \cdot)$, we show that $w(A)\leq \dfrac{1}{\displaystyle {2\inf_{\| x \|=1}}ζ(x)}\| |A|+|A^{*}|\|\leq \dfrac{1}{2}\| |A|+|A^*|\|$, where $ζ(x)=K(\frac{\langle |A|x,x \rangle}{\langle |A^{*}|x,x \rangle},2)^{r},~~~r=\min\{λ,1-λ\}$ and $0\leq λ\leq 1$ . We also give a reverse for the classical numerical radius power inequality $w(A^{n})\leq w^{n}(A)$ for any operator $A \in B(H)$ in the case when $n=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源