论文标题

球形卷积神经网络:SO(3)中扰动的稳定性

Spherical Convolutional Neural Networks: Stability to Perturbations in SO(3)

论文作者

Gao, Zhan, Gama, Fernando, Ribeiro, Alejandro

论文摘要

球形卷积神经网络(球形CNNS)通过利用数据结构从3D数据中学习非线性表示,并在形状分析,对象分类和计划等方面表现出了有希望的性能。本文研究了球形CNN与球形信号固有的旋转结构有关的特性。我们建立在球形卷积的旋转模糊基础上,以表明球形CNN对一般结构扰动稳定。特别是,我们将任意结构扰动模拟为差异性扰动,并定义了旋转距离,该旋转距离衡量了这些扰动的旋转距离。我们证明,通过差异扰动诱导的球形CNN的输出变化是由旋转距离下的扰动大小按比例界定的。这种稳定性加上旋转均衡性提供了理论上的保证,可以支撑球形CNNS利用旋转结构,在接近旋转的结构扰动下保持性能,并提供良好的概括和更快学习的实践观察结果。

Spherical convolutional neural networks (Spherical CNNs) learn nonlinear representations from 3D data by exploiting the data structure and have shown promising performance in shape analysis, object classification, and planning among others. This paper investigates the properties that Spherical CNNs exhibit as they pertain to the rotational structure inherent in spherical signals. We build upon the rotation equivariance of spherical convolutions to show that Spherical CNNs are stable to general structure perturbations. In particular, we model arbitrary structure perturbations as diffeomorphism perturbations, and define the rotation distance that measures how far from rotations these perturbations are. We prove that the output change of a Spherical CNN induced by the diffeomorphism perturbation is bounded proportionally by the perturbation size under the rotation distance. This stability property coupled with the rotation equivariance provide theoretical guarantees that underpin the practical observations that Spherical CNNs exploit the rotational structure, maintain performance under structure perturbations that are close to rotations, and offer good generalization and faster learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源