论文标题

分位数表面 - 将分位数回归概括为多元目标

Quantile Surfaces -- Generalizing Quantile Regression to Multivariate Targets

论文作者

Bieshaar, Maarten, Schreiber, Jens, Vogt, Stephan, Gensler, André, Sick, Bernhard

论文摘要

在本文中,我们提出了一种新型的多元概率预测方法。我们的方法基于单输出分位数回归(QR)的扩展到多变量目标,称为分位数表面(QS)。 QS使用一个简单而令人信服的想法,即通过方向和向量长度对概率预测进行索引,以估计中心趋势。我们将单输出QR技术扩展到多元概率目标。 QS有效地模拟了多元目标变量中的依赖性,并通过离散的分位数表示概率分布。因此,我们提出了一个新颖的两阶段过程。在第一阶段,我们执行确定性点的预测(即中心趋势估计)。随后,我们使用涉及称为分分表面回归神经网络(QSNN)的神经网络的QS对预测不确定性进行建模。此外,我们引入了新方法,以有效,直接评估发行的概率QS预测的可靠性和清晰度。我们通过连续排名概率得分(CRP)得分的定向扩展来补充这一点。最后,我们评估了有关合成数据的新方法,以及两个目前研究的两个不同领域中的现实世界挑战:首先,可再生能源发电的概率预测,第二,短期骑自行车的轨迹预测,用于自动驾驶车辆。尤其是对于后者,我们的经验结果表明,即使是简单的一层QSNN也优于传统的参数多元预测技术,从而提高了最新性能。

In this article, we present a novel approach to multivariate probabilistic forecasting. Our approach is based on an extension of single-output quantile regression (QR) to multivariate-targets, called quantile surfaces (QS). QS uses a simple yet compelling idea of indexing observations of a probabilistic forecast through direction and vector length to estimate a central tendency. We extend the single-output QR technique to multivariate probabilistic targets. QS efficiently models dependencies in multivariate target variables and represents probability distributions through discrete quantile levels. Therefore, we present a novel two-stage process. In the first stage, we perform a deterministic point forecast (i.e., central tendency estimation). Subsequently, we model the prediction uncertainty using QS involving neural networks called quantile surface regression neural networks (QSNN). Additionally, we introduce new methods for efficient and straightforward evaluation of the reliability and sharpness of the issued probabilistic QS predictions. We complement this by the directional extension of the Continuous Ranked Probability Score (CRPS) score. Finally, we evaluate our novel approach on synthetic data and two currently researched real-world challenges in two different domains: First, probabilistic forecasting for renewable energy power generation, second, short-term cyclists trajectory forecasting for autonomously driving vehicles. Especially for the latter, our empirical results show that even a simple one-layer QSNN outperforms traditional parametric multivariate forecasting techniques, thus improving the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源