论文标题
模仿物质的第一原则:概率路线图
Emulating the First Principles of Matter: A Probabilistic Roadmap
论文作者
论文摘要
本章提供了第一个原理方法的教程概述,以描述基态或平衡处物质的特性。首先,简要介绍了量子和统计力学,用于预测许多粒子系统的电子结构和各种静态特性,可用于实际应用。给出了教学示例,以说明量子蒙特卡洛和密度功能理论的基本概念和简单应用 - 两种代表性方法在第一原理建模的文献中常用。此外,本章重点介绍了集成基于物理的建模和数据科学方法以降低计算成本并扩大适用性范围的实际需求。特别强调了统计替代模型的最新发展,以从概率的角度模仿第一原理计算。概率方法提供了对仿真的近似准确性的内部评估,从而量化了预测的不确定性。朝这个方向朝着这个方向发展的各种进步建立了高斯过程与第一原理计算之间的新婚姻,并具有物理特性,例如翻译,旋转和置换对称性,自然地在新的内核函数中编码。最后,它以一些前景结束了该领域的未来进步,以更快而更准确的计算利用了一种协同的组合{of}新型理论概念和有效的数值算法。
This chapter provides a tutorial overview of first principles methods to describe the properties of matter at the ground state or equilibrium. It begins with a brief introduction to quantum and statistical mechanics for predicting the electronic structure and diverse static properties of of many-particle systems useful for practical applications. Pedagogical examples are given to illustrate the basic concepts and simple applications of quantum Monte Carlo and density functional theory -- two representative methods commonly used in the literature of first principles modeling. In addition, this chapter highlights the practical needs for the integration of physics-based modeling and data-science approaches to reduce the computational cost and expand the scope of applicability. A special emphasis is placed on recent developments of statistical surrogate models to emulate first principles calculation from a probabilistic point of view. The probabilistic approach provides an internal assessment of the approximation accuracy of emulation that quantifies the uncertainty in predictions. Various recent advances toward this direction establish a new marriage between Gaussian processes and first principles calculation, with physical properties, such as translational, rotational, and permutation symmetry, naturally encoded in new kernel functions. Finally, it concludes with some prospects on future advances in the field toward faster yet more accurate computation leveraging a synergetic combination {of} novel theoretical concepts and efficient numerical algorithms.