论文标题
来自密度矩阵分解的伪BCS波函数:在辅助场量子Carlo中应用
A Pseudo-BCS Wavefunction from Density Matrix Decomposition:Application in Auxiliary-Field Quantum Monte Carlo
论文作者
论文摘要
我们提出了一种从一体密度矩阵构造伪BCS波函数的方法。所得的多体波函数,可以为任何Fermion系统(包括具有纯粹反相互作用的Fermion系统)产生的形式,其形式为次数射击BCS形式,或反对称性生发功率(AGP)的形式。这种波函数为相关的费米亚系统提供了更好的ANSATZ,而不是单个Slater决定因素,并且通常比Slater决定因素的线性组合更好(例如,从截短的活动空间计算中)。我们描述了一个从系统的减小密度矩阵方便地构建此类波函数的过程,而不是从平均场解(这给出了反击相互作用的Slater决定因素)。因此获得的伪BCS波函数再现了密度矩阵或最小化输入和产生的密度矩阵之间的差异。伪BCS波函数的一种应用是在辅助场量子蒙特卡洛(AFQMC)计算中作为控制符号/相位问题的试验波函数。 AFQMC通常是相关的费米亚系统最准确的一般方法之一。我们表明,与通常的Slater决定性试验波函数相比,使用二维Hubbard模型相比,伪BC的形成进一步降低了约束偏差,并提高了精度的提高。此外,伪BCS试验波函数允许采用新的系统改进的自洽方法,伪BCS试验波函数由AFQMC通过一体密度矩阵迭代生成。
We present a method to construct pseudo-BCS wave functions from the one-body density matrix. The resulting many-body wave function, which can be produced for any fermion systems, including those with purely repulsive interactions, has the form of a number-projected BCS form, or antisymmetrized germinal power (AGP). Such wave functions provide a better ansatz for correlated fermion systems than a single Slater determinant, and often better than a linear combination of Slater determinants (for example from a truncated active space calculation). We describe a procedure to build such a wave function conveniently from a given reduced density matrix of the system, rather than from a mean-field solution (which gives a Slater determinant for repulsive interactions). The pseudo-BCS wave function thus obtained reproduces the density matrix or minimizes the difference between the input and resulting density matrices. One application of the pseudo-BCS wave function is in auxiliary-field quantum Monte Carlo (AFQMC) calculations as the trial wave function to control the sign/phase problem. AFQMC is often among the most accurate general methods for correlated fermion systems. We show that the pseudo-BCS form further reduces the constraint bias and leads to improved accuracy compared to the usual Slater determinant trial wave functions, using the two-dimensional Hubbard model as an example. Furthermore, the pseudo-BCS trial wave function allows a new systematically improvable self-consistent approach, with pseudo-BCS trial wave function iteratively generated by AFQMC via the one-body density matrix.