论文标题
无限维代数$ \ mathfrak {spin} $($ n $)结构在扩展/更高维度的SUSY Holoraumy中用于Valise和Shell Supermultiplet表示
Infinite-Dimensional Algebraic $\mathfrak{Spin}$($N$) Structure in Extended/Higher Dimensional SUSY Holoraumy for Valise and On-Shell Supermultiplet Representations
论文作者
论文摘要
我们探索了超出四个维度的全神观和霍奇二元性之间的关系。我们发现这种关系是超过六个维度的短暂的:这种超对称理论的结构并不需要它。对于矢量调节$ \ cal n $ = 4多重组,在四个维度中,我们表明存在这种链接。还原为1D理论提供了从高维超对称到无限维代数的链接的证据,该代数扩展了$ \ mathfrak {spin}(n)$。
We explore the relationship between holoraumy and Hodge duality beyond four dimensions. We find this relationship to be ephemeral beyond six dimensions: it is not demanded by the structure of such supersymmetrical theories. In four dimensions for the case of the vector-tensor $\cal N$ = 4 multiplet, however, we show that such a linkage is present. Reduction to 1D theories presents evidence for a linkage from higher-dimensional supersymmetry to an infinite-dimensional algebra extending $\mathfrak{Spin}(N)$.