论文标题
DOFE:面向域的特征嵌入,用于在看不见的数据集上的可推广的底面图像分割
DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image Segmentation on Unseen Datasets
论文作者
论文摘要
当测试数据集具有与培训数据集相同的分布时,深度卷积神经网络显着提高了眼底图像分割的性能。但是,在临床实践中,由于各种原因,例如不同的扫描仪供应商和图像质量,医疗图像通常在外观上表现出差异。这些分布差异可能会导致深层网络在训练数据集上过度融合,并且缺乏看不见的测试数据集的概括能力。为了减轻此问题,我们提出了一种新颖的面向域的特征嵌入(DOFE)框架,以通过探索来自多个源域的知识来提高CNN对看不见的目标域的概括能力。我们的DOFE框架通过从多源域中学到的其他域知识动态丰富了图像特征,以使语义特征更具歧视性。具体来说,我们引入了一个域知识池,以学习和记住从多源域中提取的先前信息。然后,使用面向域的聚合特征增强原始图像特征,这些特征是根据输入图像和多源域图像之间的相似性从知识库引起的。我们进一步设计了一个新颖的域代码预测分支来推断这种相似性,并采用注意力引导的机制将汇总特征与语义特征组合在一起。我们全面评估了我们的DOFE框架,包括两个底面图像分割任务,包括光学杯和圆盘分割和血管分割。我们的DOFE框架在看不见的数据集上生成令人满意的分割结果,并超过其他域的概括和网络正则化方法。
Deep convolutional neural networks have significantly boosted the performance of fundus image segmentation when test datasets have the same distribution as the training datasets. However, in clinical practice, medical images often exhibit variations in appearance for various reasons, e.g., different scanner vendors and image quality. These distribution discrepancies could lead the deep networks to over-fit on the training datasets and lack generalization ability on the unseen test datasets. To alleviate this issue, we present a novel Domain-oriented Feature Embedding (DoFE) framework to improve the generalization ability of CNNs on unseen target domains by exploring the knowledge from multiple source domains. Our DoFE framework dynamically enriches the image features with additional domain prior knowledge learned from multi-source domains to make the semantic features more discriminative. Specifically, we introduce a Domain Knowledge Pool to learn and memorize the prior information extracted from multi-source domains. Then the original image features are augmented with domain-oriented aggregated features, which are induced from the knowledge pool based on the similarity between the input image and multi-source domain images. We further design a novel domain code prediction branch to infer this similarity and employ an attention-guided mechanism to dynamically combine the aggregated features with the semantic features. We comprehensively evaluate our DoFE framework on two fundus image segmentation tasks, including the optic cup and disc segmentation and vessel segmentation. Our DoFE framework generates satisfying segmentation results on unseen datasets and surpasses other domain generalization and network regularization methods.