论文标题
两流体慢模式冲击中的碰撞电离,重组和电离潜力:分析和数值结果
Collisional ionisation, recombination and ionisation potential in two-fluid slow-mode shocks: analytical and numerical results
论文作者
论文摘要
冲击是下部太阳大气的普遍特征,由离子化和中性物种组成。包括部分电离会导致电击现有的有限宽度,其中电离和中性物种将其解次和恢复。因此,除了整个冲击的绝热温度变化外,还会导致两种物种之间的摩擦加热的冲击速度。冲击中的局部温度增强改变了重组和电离速率,从而改变了等离子体的组成。我们研究碰撞电离和重组在慢模式部分离子电击中的作用。特别是我们结合了电离势能损失,并分析具有非保守能量方程的后果。半分析方法用于确定具有电离,重组,电离电位和任意加热的两流体模型的可能平衡冲击跳跃。使用(P \下划线{I} P)代码进行两流体数值模拟。将结果与MHD模型和半分析溶液进行比较。计算电离,重组和电离潜力的电离显着改变了子结构和震后区域的冲击行为。特别是,对于给定的温度,由于需要通过加热函数平衡的辐射损失,因此仅适用于特定密度。电离潜力的结果是,压缩冲击将导致震动后区域的温度降低,而不是MHD的增加。数值模拟与冲击速度的衍生分析模型很好。
Shocks are a universal feature of the lower solar atmosphere which consists of both ionised and neutral species. Including partial ionisation leads to a finite-width existing for shocks, where the ionised and neutral species decouple and recouple. As such, drift velocities exist within the shock that lead to frictional heating between the two species, in addition to the adiabatic temperature changes across the shock. The local temperature enhancements within the shock alter the recombination and ionisation rates and hence change the composition of the plasma. We study the role of collisional ionisation and recombination in slow-mode partially-ionised shocks. In particular we incorporate the ionisation potential energy loss and analyse the consequences of having a non-conservative energy equation. A semi-analytical approach is used to determine the possible equilibrium shock jumps for a two-fluid model with ionisation, recombination, ionisation potential and arbitrary heating. Two-fluid numerical simulations are performed using the (P\underline{I}P) code. Results are compared to the MHD model and semi-analytic solution. Accounting for ionisation, recombination and ionisation potential significantly alters the behaviour of shocks in both substructure and post-shock regions. In particular, for a given temperature, equilibrium can only exist for specific densities due to the radiative losses needing to be balanced by the heating function. A consequence of the ionisation potential is that a compressional shock will lead to a reduction of temperature in the post-shock region, rather than the increase seen for MHD. The numerical simulations pair well with the derived analytic model for shock velocities.