论文标题

圆形排列的订单

An order on circular permutations

论文作者

Abram, Antoine, Chapelier-Laget, Nathan, Reutenauer, Christophe

论文摘要

来自对仿期Weyl群体的研究的动机,在$ s_n $(即$ n $ -cycles)的圆形排列中定义了排名Poset的结构。它与所谓的接收媒介的poset以及affine Symmetric Group $ \ tilde s_n $的间隔是同构的。 POSET是一个半分布的晶格,排名函数(其范围为$ n $)是由涉及反转的某些特殊公式计算的。我们还证明了与Eulerian数字,$ n $ -gon和Young的晶格的一些链接。

Motivation coming from the study of affine Weyl groups, a structure of ranked poset is defined on the set of circular permutations in $S_n$ (that is, $n$-cycles). It is isomorphic to the poset of so-called admitted vectors, and to an interval in the affine symmetric group $\tilde S_n$ with the weak order. The poset is a semidistributive lattice, and the rank function, whose range is cubic in $n$, is computed by some special formula involving inversions. We prove also some links with Eulerian numbers, triangulations of an $n$-gon, and Young's lattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源