论文标题

关于因果算法追索的公平性

On the Fairness of Causal Algorithmic Recourse

论文作者

von Kügelgen, Julius, Karimi, Amir-Hossein, Bhatt, Umang, Valera, Isabel, Weller, Adrian, Schölkopf, Bernhard

论文摘要

通常从预测的角度研究算法公平性。取而代之的是,在这里,我们从建议对个人的追索行动的角度调查公平性,以纠正不利的分类。我们在小组和个人层面上提出了两个新的公平标准,这些标准与以前的工作相均等的工作与决策边界的平均距离不同 - 明确说明特征之间的因果关系,从而捕获了在物理世界中执行的追索行动的下游效应。我们探讨了我们的标准与他人的关系,例如反事实公平,并表明追索性的公平性与预测的公平性互补。我们从理论和经验上研究如何通过更改分类器并对成人数据集进行案例研究来实施公平的因果追索权。最后,我们讨论了我们标准所揭示的数据生成过程中的公平违规行为是否可以通过社会干预措施更好地解决,而不是对分类器的限制。

Algorithmic fairness is typically studied from the perspective of predictions. Instead, here we investigate fairness from the perspective of recourse actions suggested to individuals to remedy an unfavourable classification. We propose two new fairness criteria at the group and individual level, which -- unlike prior work on equalising the average group-wise distance from the decision boundary -- explicitly account for causal relationships between features, thereby capturing downstream effects of recourse actions performed in the physical world. We explore how our criteria relate to others, such as counterfactual fairness, and show that fairness of recourse is complementary to fairness of prediction. We study theoretically and empirically how to enforce fair causal recourse by altering the classifier and perform a case study on the Adult dataset. Finally, we discuss whether fairness violations in the data generating process revealed by our criteria may be better addressed by societal interventions as opposed to constraints on the classifier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源