论文标题
浮子同源物中的不可定向的链接恢复和扭转顺序
Non-orientable link cobordisms and torsion order in Floer homologies
论文作者
论文摘要
我们使用Instanton和打结浮子同源性的无方向版本来证明涉及欧拉(Euler)特征的不平等以及出现在不可定向的同居中的本地最大值的数量,这反映了Juhasz,Miller和Zemke最近的一篇论文的结果。我们论点中的大多数微妙之处在于,不可定向的恢复主义的地图比其定向的配音需要更复杂的装饰。我们介绍了频段解开数字和精致的恢复距离的无方向版本,并将结果应用于基于漂浮同源性的扭转顺序对这些界限进行界限。最后,我们表明,结$ k $与未结的无调的精制取回距离与$ k $的不可方向的切片属之间的差异可能是任意的。
We use unoriented versions of instanton and knot Floer homology to prove inequalities involving the Euler characteristic and the number of local maxima appearing in unorientable cobordisms, which mirror results of a recent paper by Juhasz, Miller, and Zemke concerning orientable cobordisms. Most of the subtlety in our argument lies in the fact that maps for non-orientable cobordisms require more complicated decorations than their orientable counterparts. We introduce unoriented versions of the band unknotting number and the refined cobordism distance and apply our results to give bounds on these based on the torsion orders of the Floer homologies. Finally, we show that the difference between the unoriented refined cobordism distance of a knot $K$ from the unknot and the non-orientable slice genus of $K$ can be arbitrarily large.