论文标题

傅里叶式代数的同态

Homomorphisms of Fourier-Stieltjes algebras

论文作者

Stokke, Ross

论文摘要

每个同构$φ:b(g)\ rightarrow b(h)$之间的傅立叶 - stieltjes代数之间本地紧凑型组的代数$ g $和$ h $确定由连续的映射$α:y \rightarrowΔ(y \rightarrowΔ(b(g))$,$ y $,$ y $是$ h $ h $ h $ h $ h $ h $和$ h $ g(b)(b)(b $ h $ g(b)(b)(b)(b) $ b(g)$($*$ - 半群)。我们展示了大量的地图$α$,其中$φ=j_α:b(g)\ rightarrow b(h)$是一种完全积极/完全承诺/完全有限的同构,并在多种情况下建立相反的语句。例如,当$ g $是欧几里得 - 或$ p $ -Adic-Motion Group时,我们完全表征所有完全表征所有完全积极/完全有限/完全有限的同构$φ:b(g)\ rightarrow b(h)$。在这些情况下,我们对完全积极/完全合同的同态的描述采用了“同构/仿射图兼容系统的融合图”的概念,并且与傅立叶代数情况大不相同。

Every homomorphism $φ: B(G) \rightarrow B(H)$ between Fourier-Stieltjes algebras on locally compact groups $G$ and $H$ is determined by a continuous mapping $α: Y \rightarrow Δ(B(G))$, where $Y$ is a set in the open coset ring of $H$ and $Δ(B(G))$ is the Gelfand spectrum of $B(G)$ (a $*$-semigroup). We exhibit a large collection of maps $α$ for which $φ=j_α: B(G) \rightarrow B(H)$ is a completely positive/completely contractive/completely bounded homomorphism and establish converse statements in several instances. For example, we fully characterize all completely positive/completely contractive/completely bounded homomorphisms $φ: B(G) \rightarrow B(H)$ when $G$ is a Euclidean- or $p$-adic-motion group. In these cases, our description of the completely positive/completely contractive homomorphisms employs the notion of a "fusion map of a compatible system of homomorphisms/affine maps" and is quite different from the Fourier algebra situation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源