论文标题
尽管流失了
Bankrupting Sybil Despite Churn
论文作者
论文摘要
当对手控制系统中的多个标识符(ID)时,就会发生Sybil攻击。将SYBIL(不良)ID的数量限制为少数群体对于使用良好的工具来容忍恶意行为至关重要,例如拜占庭一致性和安全的多方计算。 实施Sybil少数族裔的一种流行技术是资源燃烧:网络资源的可验证消耗,例如计算能力,带宽或内存。不幸的是,基于资源燃烧的典型防御措施需要非陪同(良好)ID至少消耗与对手一样多的资源。此外,即使系统成员资格相对稳定,它们也具有很高的资源燃烧成本。 在这里,我们提出了一种新的Sybil防御力ERGO,可以保证(1)总是有少数不良ID; (2)当系统受到重大攻击时,良好的ID在渐近地消耗的资源比不良的资源少。特别是,对于可能呈指数级变化的流失率,ERGO下良好ID的资源燃烧率为O(\ sqrt {TJ} + J),其中T是对手的资源燃烧率,J是良好ID的联合率。我们表明,对于大型算法,这种资源燃烧速率在渐近上是最佳的。 我们与先前的SYBIL防御能力一起对ERGO进行了经验评估。此外,我们证明ERGO可以与用于对Sybil ID进行分类的机器学习技术结合,同时保留其理论保证。根据我们的实验将ERGO与以前的两个SYBIL防御进行比较,ERGO相对于对手的资源燃烧量提高了最多2个数量级,而无需机器学习,并使用机器学习最多3个数量级。
A Sybil attack occurs when an adversary controls multiple identifiers (IDs) in a system. Limiting the number of Sybil (bad) IDs to a minority is critical to the use of well-established tools for tolerating malicious behavior, such as Byzantine agreement and secure multiparty computation. A popular technique for enforcing a Sybil minority is resource burning: the verifiable consumption of a network resource, such as computational power, bandwidth, or memory. Unfortunately, typical defenses based on resource burning require non-Sybil (good) IDs to consume at least as many resources as the adversary. Additionally, they have a high resource burning cost, even when the system membership is relatively stable. Here, we present a new Sybil defense, ERGO, that guarantees (1) there is always a minority of bad IDs; and (2) when the system is under significant attack, the good IDs consume asymptotically less resources than the bad. In particular, for churn rate that can vary exponentially, the resource burning rate for good IDs under ERGO is O(\sqrt{TJ} + J), where T is the resource burning rate of the adversary, and J is the join rate of good IDs. We show this resource burning rate is asymptotically optimal for a large class of algorithms. We empirically evaluate ERGO alongside prior Sybil defenses. Additionally, we show that ERGO can be combined with machine learning techniques for classifying Sybil IDs, while preserving its theoretical guarantees. Based on our experiments comparing ERGO with two previous Sybil defenses, ERGO improves on the amount of resource burning relative to the adversary by up to 2 orders of magnitude without machine learning, and up to 3 orders of magnitude using machine learning.