论文标题
双线性Bochner-Riesz的最大估计值
Maximal estimates for bilinear Bochner-Riesz means
论文作者
论文摘要
我们建立了最大双线性Bochner-Riesz的改进和敏锐的$ l^p $估计,在所有维度上均为$ n \ geq 1 $。这项工作扩展了Jeong和Lee \ Cite {JL}证明的结果。我们还恢复了Bochner-Riesz均值的已知结果。证明方法涉及双线性bochner-riesz乘数$(1- |ξ|^2- |η|^2)_+^α$的新分解,以及证明频率局部平方功能的$ l^p $估计的精致分析。
We establish improved and sharp $L^p$ estimates for the maximal bilinear Bochner-Riesz means in all dimensions $n\geq 1$. This work extends the results proved by Jeong and Lee \cite{JL}. We also recover the known results for the bilinear Bochner-Riesz means. The method of proof involves a new decomposition of the bilinear Bochner-Riesz multiplier $(1-|ξ|^2-|η|^2)_+^α$ and delicate analysis in proving $L^p$ estimates for frequency localized square functions.