论文标题

沿无序界面的热激活的间歇性动力学的间歇性动力学

Thermally activated intermittent dynamics of creeping crack fronts along disordered interfaces

论文作者

Vincent-Dospital, Tom, Cochard, Alain, Santucci, Stéphane, Måløy, Knut Jørgen, Toussaint, Renaud

论文摘要

我们提出了一个亚临界裂缝生长模型,再加上沿Rugous破裂前部作用机械应力的弹性重新分布。我们显示了该模型定量再现沿弱无序界面传播的裂纹的间歇动力学的能力。为此,我们假设此类界面的断裂能(从临界能量释放速率)遵循空间相关的正态分布。我们比较了从断裂动力学中获得的各种统计特征,以及从烧结多甲基丙烯酸酯(PMMA)界面中传播的裂纹。在以前的工作中,已经证明这种方法可以再现裂缝的平均进展及其局部前速度分布。在这里,我们进一步证明了所提出的模型还定量解释了裂纹前沿的复杂自动缩放缩放形态及其时间演变,对于局部速度场的空间和时间相关性以及间歇性生长动态的雪崩大小分布。因此,我们提供了新的证据,表明类似Arrhenius的亚临界增长定律特别适合描述蠕动裂纹。

We present a subcritical fracture growth model, coupled with the elastic redistribution of the acting mechanical stress along rugous rupture fronts. We show the ability of this model to quantitatively reproduce the intermittent dynamics of cracks propagating along weak disordered interfaces. To this end, we assume that the fracture energy of such interfaces (in the sense of a critical energy release rate) follows a spatially correlated normal distribution. We compare various statistical features from the hence obtained fracture dynamics to that from cracks propagating in sintered polymethylmethacrylate (PMMA) interfaces. In previous works, it has been demonstrated that such approach could reproduce the mean advance of fractures and their local front velocity distribution. Here, we go further by showing that the proposed model also quantitatively accounts for the complex self-affine scaling morphology of crack fronts and their temporal evolution, for the spatial and temporal correlations of the local velocity fields and for the avalanches size distribution of the intermittent growth dynamics. We thus provide new evidence that Arrhenius-like subcritical growth laws are particularly suitable for the description of creeping cracks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源