论文标题

AutoAdr:AD相关性的自动模型设计

AutoADR: Automatic Model Design for Ad Relevance

论文作者

Chen, Yiren, Yang, Yaming, Sun, Hong, Wang, Yujing, Xu, Yu, Shen, Wei, Zhou, Rong, Tong, Yunhai, Bai, Jing, Zhang, Ruofei

论文摘要

大规模的预训练模型吸引了研究界的广泛关注,并在自然语言处理的各种任务上显示出令人鼓舞的结果。但是,这些预训练的模型是内存和计算密集型,阻碍了它们在AD相关性等工业在线系统中的部署。同时,如何设计有效但有效的模型体系结构是在线AD相关性中的另一个具有挑战性的问题。最近,Automl为建筑设计提供了新的灯光,但是如何将其与预先训练的语言模型集成在一起仍然尚未确定。在本文中,我们提出了AutoAdr(相关性的自动模型设计) - 一种新颖的端到端框架,以应对这一挑战,并分享我们将这些尖端技术运送到Microsoft Bing在线相关系统中的经验。具体而言,AutoAdr利用单发神经体系结构搜索算法来找到用于AD相关性的量身定制的网络体系结构。搜索过程同时考虑了大型预训练的教师模型(例如BERT)的知识蒸馏,同时考虑了在线服务约束(例如记忆和延迟)。我们将AutoAdr设计的模型添加到生产AD相关模型中。这种附加的子模型将原始AD相关模型的Precision-Recall AUC(PR AUC)提高了2.65倍的标准化运输栏。更重要的是,添加这种自动设计的子模型可导致在线A/B测试中降低4.6%的不良AD比率。该模型已被运送到Microsoft Bing Ad相关性生产模型中。

Large-scale pre-trained models have attracted extensive attention in the research community and shown promising results on various tasks of natural language processing. However, these pre-trained models are memory and computation intensive, hindering their deployment into industrial online systems like Ad Relevance. Meanwhile, how to design an effective yet efficient model architecture is another challenging problem in online Ad Relevance. Recently, AutoML shed new lights on architecture design, but how to integrate it with pre-trained language models remains unsettled. In this paper, we propose AutoADR (Automatic model design for AD Relevance) -- a novel end-to-end framework to address this challenge, and share our experience to ship these cutting-edge techniques into online Ad Relevance system at Microsoft Bing. Specifically, AutoADR leverages a one-shot neural architecture search algorithm to find a tailored network architecture for Ad Relevance. The search process is simultaneously guided by knowledge distillation from a large pre-trained teacher model (e.g. BERT), while taking the online serving constraints (e.g. memory and latency) into consideration. We add the model designed by AutoADR as a sub-model into the production Ad Relevance model. This additional sub-model improves the Precision-Recall AUC (PR AUC) on top of the original Ad Relevance model by 2.65X of the normalized shipping bar. More importantly, adding this automatically designed sub-model leads to a statistically significant 4.6% Bad-Ad ratio reduction in online A/B testing. This model has been shipped into Microsoft Bing Ad Relevance Production model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源