论文标题

多甲状腺

Polypositroids

论文作者

Lam, Thomas, Postnikov, Alexander

论文摘要

我们启动了一类多型的研究,我们将其汇合了多型多甲状腺,该研究被定义为那些同时概括的permutohedra(或多膜膜瘤)和艾氏多型的多型。肌化是由完全非负晶状体引起的催化剂,而多甲状腺功能纤维是“阳性”多肌动物。我们使用Coxeter项链和平衡的图对多甲状腺进行参数,并通过极端射线和方面的不平等描述多甲状腺锥锥。我们引入了(W,C) - 二甲状腺素的概念,用于有限的Weyl oft w和Coxeter元素c的选择。我们将(W,c) - 二甲状腺的理论与有限类型的群集代数和广义辅助关系联系起来。我们讨论膜,这些膜是多型多甲状腺内部的某些三角二维表面。膜从阳式甲状腺扩展了质图的概念。

We initiate the study of a class of polytopes, which we coin polypositroids, defined to be those polytopes that are simultaneously generalized permutohedra (or polymatroids) and alcoved polytopes. Whereas positroids are the matroids arising from the totally nonnegative Grassmannian, polypositroids are "positive" polymatroids. We parametrize polypositroids using Coxeter necklaces and balanced graphs, and describe the cone of polypositroids by extremal rays and facet inequalities. We introduce a notion of (W,c)-polypositroid for a finite Weyl group W and a choice of Coxeter element c. We connect the theory of (W,c)-polypositroids to cluster algebras of finite type and to generalized associahedra. We discuss membranes, which are certain triangulated 2-dimensional surfaces inside polypositroids. Membranes extend the notion of plabic graphs from positroids to polypositroids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源