论文标题
SR $ _ {2-X} $ la $ _x $ CONBO $ _6 $中离散能量状态和集群玻璃行为的证据
Evidence of discrete energy states and cluster-glass behavior in Sr$_{2-x}$La$_x$CoNbO$_6$
论文作者
论文摘要
我们报告了特定热的详细分析[c $ _ {\ rm p} $(t)]和磁性沮丧的sr $ _ {2-x} $ la $ _x $ _x $ cONBO $ _6 $($ x = $ x = $ 0--1)双perovskites的双重perovskites,以了解低温温度复杂的磁性磁性相互作用和$ x $ x $ x $。有趣的是,在$ x \ leqslant $ 0.4样品中观察到的Schottky异常在使用磁场和$ x $的情况下逐渐向更高的温度转移,并且分析揭示了这些样品中离散能量状态的持续性,这些样品是由旋转轨道耦合和八次扭曲而产生的。此外,LandéG-因子的提取值表明存在高旋转状态CO $^{3+} $ ions靠近非磁性低旋转状态。特定的热数据显示,由于远距离抗铁磁序的演变,$ x \ geqslant $ 0.6样品的$λ$ -Type异常。我们对低温C $ _ {\ rm p} $(t)$ x \ geqslant $ 0.6样品的分析证明了3D吉他elberg抗铁磁(AFM)相互作用,温度诱导的二阶二阶AFM-paramagnetic相位相位过渡。更有趣的是,我们演示了$ x = $ 1样本中的kramers doublet doublet状态的免费co $^{2+} $。此外,磁化数据的AC敏感性和时间演变表明,低温集群玻璃类似于$ x = $ 0--0.4个样本,其中自旋旋转相关强度以$ x $降低。
We report the detailed analysis of specific heat [C$_{\rm P}$(T)] and ac-susceptibility for magnetically frustrated Sr$_{2-x}$La$_x$CoNbO$_6$ ($x=$ 0--1) double perovskites to understand low temperature complex magnetic interactions and their evolution with $x$. Interestingly, the observed Schottky anomaly in the $x\leqslant$ 0.4 samples shifts gradually towards higher temperature with magnetic field as well as $x$, and the analysis reveal the persistence of the discrete energy states in these samples resulting from the spin-orbit coupling and octahedral distortion. Moreover, the extracted values of Landé g--factor indicate the existence of high-spin state Co$^{3+}$ ions close to non-magnetic low-spin state. The specific heat data show the $λ$-type anomaly for the $x\geqslant$ 0.6 samples due to evolution of the long range antiferromagnetic ordering. Our analysis of low temperature C$_{\rm P}$(T) data for the $x\geqslant$ 0.6 samples demonstrate the 3D isotropic Heisenberg antiferromagnetic (AFM) interactions and the temperature induced second order AFM--paramagnetic phase transition. More interestingly, we demonstrate the presence of the free Co$^{2+}$ like Kramers doublet ground state in the $x =$1 sample. Further, the ac susceptibility and time evolution of the magnetization data reveal the low temperature cluster-glass like behavior in the $x=$ 0--0.4 samples, where spin-spin correlation strength decreases with $x$.