论文标题
旋转扭矩门磁场传感器
Spin torque gate magnetic field sensor
论文作者
论文摘要
旋转轨道扭矩提供了操纵磁性材料的磁态和磁化动力学的有效途径,这对于各种自旋设备(例如磁性记忆,逻辑,振荡器和神经形态计算)的能源有效运行至关重要。在这里,我们通过利用自旋扭矩驱动的磁化强度切换的纵向场依赖性来描述并实验证明具有极为简单结构的自旋扭矩磁场传感器的策略。与大多数需要微妙的磁性偏置以实现对外场的线性响应的磁化传感器不同,旋转扭矩传感器可以实现相同的情况,而无需任何磁性偏置,这极大地简化了传感器结构。此外,通过使用AC电流驱动传感器,DC偏移会自动抑制,从而消除了对桥梁或补偿电路的需求。我们使用新开发的WTE2/TI/COFEB Trilayer验证了该概念,并证明传感器可以在3-10 OE的范围内线性地工作,而DC偏移可忽略不计。
Spin-orbit torque provides an efficient pathway to manipulate the magnetic state and magnetization dynamics of magnetic materials, which is crucial for energy-efficient operation of a variety of spintronic devices such as magnetic memory, logic, oscillator, and neuromorphic computing. Here, we describe and experimentally demonstrate a strategy for the realization of a spin torque gate magnetic field sensor with extremely simple structure by exploiting the longitudinal field dependence of the spin torque driven magnetization switching. Unlike most magnetoresistance sensors which require a delicate magnetic bias to achieve a linear response to the external field, the spin torque gate sensor can achieve the same without any magnetic bias, which greatly simplifies the sensor structure. Furthermore, by driving the sensor using an ac current, the dc offset is automatically suppressed, which eliminates the need for a bridge or compensation circuit. We verify the concept using the newly developed WTe2/Ti/CoFeB trilayer and demonstrate that the sensor can work linearly in the range of 3-10 Oe with negligible dc offset.