论文标题

视觉辅助广播:使用机器学习中的无线电和视频域中的用户身份匹配

Vision-Aided Radio: User Identity Match in Radio and Video Domains Using Machine Learning

论文作者

de Pinho, Vinicius M., de Campos, Marcello L. R., Garcia, Luis Uzeda, Popescu, Dalia

论文摘要

5G通过支持对不断增长的数据流量的需求和各种具有不同要求的服务的需求,是通信技术行业中必不可少的推动者和领先的基础设施提供商。深度学习和计算机视觉工具的使用可以通过视觉数据中的信息来提高网络的环境意识。通过计算机视觉工具(例如用户位置,移动方向和速度)提取的信息可以立即用于网络。但是,网络必须具有与视觉和无线电系统中用户身份相匹配的机制。在本文献中没有这种机制。因此,我们提出了一个框架,以匹配来自视觉和无线电域的信息。这是计算机视觉工具在通信中实际应用的重要步骤。我们详细介绍了提出的框架培训和部署阶段,以供提出的设置。我们使用在不同类型的环境中收集的数据进行了实践实验。这项工作比较了深度神经网络和随机森林分类器的使用,并表明前者在所有实验中的表现都更好,从而达到了分类精度大于99%。

5G is designed to be an essential enabler and a leading infrastructure provider in the communication technology industry by supporting the demand for the growing data traffic and a variety of services with distinct requirements. The use of deep learning and computer vision tools has the means to increase the environmental awareness of the network with information from visual data. Information extracted via computer vision tools such as user position, movement direction, and speed can be promptly available for the network. However, the network must have a mechanism to match the identity of a user in both visual and radio systems. This mechanism is absent in the present literature. Therefore, we propose a framework to match the information from both visual and radio domains. This is an essential step to practical applications of computer vision tools in communications. We detail the proposed framework training and deployment phases for a presented setup. We carried out practical experiments using data collected in different types of environments. The work compares the use of Deep Neural Network and Random Forest classifiers and shows that the former performed better across all experiments, achieving classification accuracy greater than 99%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源