论文标题
在非交通性的邓福德 - 史瓦兹(Dunford-Schwartz)ergodic定理中,几乎均匀的融合$ p> 1 $
Almost Uniform Convergence in Noncommutative Dunford-Schwartz Ergodic Theorem for $p>1$
论文作者
论文摘要
我们证明,在非共同空间$ l^p(\ Mathcal m,τ)$,$ 1 <p <\ infty $中,杜恩福德·史加兹(Dunford-Schwartz)运营商产生的千古式ces \'aro平均值几乎均匀地收敛(在埃格罗夫(Egorov)的意义上)。这个问题可以追溯到Yeadon \ cite {ye}的原始论文,在这些论文中,这些平均值几乎是均匀的汇合,以$ p = 1 $建立。
We prove that the ergodic Ces\' aro averages generated by a positive Dunford-Schwartz operator in a noncommutative space $L^p(\mathcal M,τ)$, $1<p<\infty$, converge almost uniformly (in Egorov's sense). This problem goes back to the original paper of Yeadon \cite{ye}, where bilaterally almost uniform convergence of these averages was established for $p=1$.