论文标题
sextic $ k3 $ -surfaces in $ \ mathbb {p}^4 $
Conics in sextic $K3$-surfaces in $\mathbb{P}^4$
论文作者
论文摘要
我们证明,平滑六$ k3 $ -surface $ x \ subset \ mathbb {p}^4 $中的最大圆锥数为285,而真正的六重奏中最大的真实圆锥数为261。在两种极构构中,所有圆锥形都不可减速。
We prove that the maximal number of conics in a smooth sextic $K3$-surface $X\subset\mathbb{P}^4$ is 285, whereas the maximal number of real conics in a real sextic is 261. In both extremal configurations, all conics are irreducible.