论文标题

统一费米气体中旋转量子湍流

Rotating quantum turbulence in the unitary Fermi gas

论文作者

Hossain, Khalid, Kobuszewski, Konrad, Forbes, Michael McNeil, Magierski, Piotr, Sekizawa, Kazuyuki, Wlazłowski, Gabriel

论文摘要

量化的涡旋在旋转的超流体中具有角动量,并且是量子湍流现象的关键。超冷原子技术的进步使得能够在实验和理论控制方面研究量子湍流,这与超流体氦实验的原始背景不同。尽管对骨髓系统进行了大量工作,但尽管对其他环境(例如旋转中子恒星),尽管适用于其他环境,但对费米子量子湍流的详细研究仍在开始。在本文中,我们使用精确的基于轨道的时间依赖性密度功能理论(DFT),介绍了旋转费米子超流体中量子湍流的首次大规模研究,称为超氟局部密度近似(SLDA)。我们在旋转费米子超流体的动态平衡中确定了两种不同的湍流衰变模式,并将这些结果与计算更简单的无轨道DFT进行对比,如果明确包括耗散,我们发现这些结果可以定性地再现这些衰减机制。这些结果表明,费米子超级流体固有的一体耗散机制起着关键作用,将费尔米子与纤维发动体区分开来,但也表明可以校正更简单的无轨道理论,以便可以使用这些更有效的技术来模拟诸如中子中心恒星中的中子荧光素中的超级荧光系统。

Quantized vortices carry the angular momentum in rotating superfluids, and are key to the phenomenon of quantum turbulence. Advances in ultra-cold atom technology enable quantum turbulence to be studied in regimes with both experimental and theoretical control, unlike the original contexts of superfluid helium experiments. While much work has been performed with bosonic systems, detailed studies of fermionic quantum turbulence are nascent, despite wide applicability to other contexts such as rotating neutron stars. In this paper, we present the first large-scale study of quantum turbulence in rotating fermionic superfluids using an accurate orbital based time-dependent density functional theory (DFT) called the superfluid local density approximation (SLDA). We identify two different modes of turbulent decay in the dynamical equilibration of a rotating fermionic superfluid, and contrast these results with a computationally simpler orbital-free DFT, which we find can qualitatively reproduce these decay mechanisms if dissipation is explicitly included. These results demonstrate that one-body dissipation mechanisms intrinsic to fermionic superfluids play a key role differentiating fermionic from bosonic turbulence, but also suggest that simpler orbital-free theories may be corrected so that these more efficient techniques can be used to model extended physical systems such as neutron superfluids in neutron stars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源