论文标题
视网膜:使用递归深度学习,基于视网膜结构估算24-2的视野数据
RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2 Visual Field Data based on Retinal Structure
论文作者
论文摘要
青光眼是世界上不可逆失明的主要原因,影响了7000万人。繁琐的标准自动化(SAP)测试最常用于检测因青光眼引起的视觉丧失。由于SAP测试的先天困难及其高测试 - 重度变异性,我们提出了Retinervenet,这是一种深卷积递归神经网络,用于获得SAP视野的估计。 Retinervenet使用来自更客观的光谱域光学相干断层扫描(SDOCT)中的信息。视网膜视网膜试图从视网膜神经纤维层(RNFL)周围的厚度开始,以追踪视网膜纤维的弧形收敛性,以估计由年龄校正的24-2 SAP值。递归通过所提出的网络依次地估计了视觉位置,越来越远离视盘。虽然我们实验中使用的所有方法在晚期疾病组中表现出较低的性能,但观察到的网络比估计单个视野值的所有基准更准确。我们进一步增强了视网膜,以额外预测SAP平均偏差值,并通过越来越多地加权训练数据中代表性不足的部分来进一步改善性能。
Glaucoma is the leading cause of irreversible blindness in the world, affecting over 70 million people. The cumbersome Standard Automated Perimetry (SAP) test is most frequently used to detect visual loss due to glaucoma. Due to the SAP test's innate difficulty and its high test-retest variability, we propose the RetiNerveNet, a deep convolutional recursive neural network for obtaining estimates of the SAP visual field. RetiNerveNet uses information from the more objective Spectral-Domain Optical Coherence Tomography (SDOCT). RetiNerveNet attempts to trace-back the arcuate convergence of the retinal nerve fibers, starting from the Retinal Nerve Fiber Layer (RNFL) thickness around the optic disc, to estimate individual age-corrected 24-2 SAP values. Recursive passes through the proposed network sequentially yield estimates of the visual locations progressively farther from the optic disc. While all the methods used for our experiments exhibit lower performance for the advanced disease group, the proposed network is observed to be more accurate than all the baselines for estimating the individual visual field values. We further augment RetiNerveNet to additionally predict the SAP Mean Deviation values and also create an ensemble of RetiNerveNets that further improves the performance, by increasingly weighting-up underrepresented parts of the training data.