论文标题
马尔可夫随机步行模型的流行蔓延模型
A markovian random walk model of epidemic spreading
论文作者
论文摘要
我们分析了图上独立随机步行者的人群的动力学,并开发了一种简单的流行病模型。我们假设每个助行器都在离散时间的马尔可维亚步行中独立访问有限的厄尔贡图的节点,该节目由他的特定过渡矩阵控制。有了这个假设,我们首先得出了繁殖数的上限。然后,我们假设一个沃克在其中一个州:易感,感染或恢复。在某个特征时期,传染性的步行者仍然具有感染力。如果一个传染性的步行者在同一节点上遇到一个易感性的助行器,那么易感助行器就有一定的可能性。通过在计算机模拟中实现这一假设,我们研究了新兴感染模式的时空演变。通常,随机步行方法似乎具有研究流行病扩散并确定流行动力学中相关参数的巨大潜力。
We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time markovian walk governed by his specific transition matrix. With this assumption, we first derive an upper bound for the reproduction numbers. Then we assume that a walker is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during a certain characteristic time. If an infectious walker meets a susceptible one on the same node there is a certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer simulations we study the space-time evolution of the emerging infection patterns. Generally, random walk approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters in epidemic dynamics.