论文标题
晶粒对齐和辐射扭矩的破坏在密集的分子云中,对极化孔的影响
Grain alignment and disruption by radiative torques in dense molecular clouds and implication for polarization holes
论文作者
论文摘要
对齐晶粒引起的尘埃极化被广泛用于研究各种环境(包括星形区域)的磁场。然而,关于在密集的分子云(MC)中仍然存在哪些光学深度谷物对齐的问题尚不清楚。在本文中,我们旨在实现分析公式,以通过辐射MC中的局部物理参数的功能来实现辐射式摩qu(Rats)的功能,以在辐射式摩qu($ a _ {\ rm align} $)和旋转破坏($ a _ {\ a _ {\ rm disr} $)。我们首先找到了辐射强度的分析近似值和辐射场的平均波长,没有嵌入的恒星和嵌入式恒星,然后在$ a _ {\ rm align} $和$ a _ _ {\ rm disr} $的$ a _ {\ rm align} $中得出分析公式。 We find that within a starless core of density $n_{\rm H}\sim 10^{5}\rm cm^{-3}$, grains of size $a<0.25μm$ can be aligned up to $A_{V}\sim 5$ by RATs, whereas micron-sized grains can still be aligned at $A_{V}\sim 50$. $ a_ {v} $对齐尺寸的增加可以解释对无星核观察到的极化孔的存在。对于具有嵌入式原恒星的MC,我们发现,由于辐射强度的提高,对齐和旋转破坏的效率都会增加质体。这种破坏效应导致$ a_ {v} $或发射强度降低极化程度,这会重现向原恒星位置观察到的流行极化孔。最后,我们得出了最大$ a_ {v} $的公式,其中谷物对齐仍然存在于无星芯中,并讨论了其约束谷物生长的潜力。
Dust polarization induced by aligned grains is widely used to study magnetic fields in various environments, including star-forming regions. However, the question of to what optical depth grain alignment still exists in a dense molecular cloud (MC) is unclear. In this paper, we aim to achieve analytical formulae for the minimum size of aligned grains ($a_{\rm align}$) and rotational disruption ($a_{\rm disr}$) by RAdiative Torques (RATs) as a function of the local physical parameters within dense MCs. We first find the analytical approximations for the radiation strength and the mean wavelength of the attenuated radiation field in a dense MC without and with embedded stars and then derive analytical formulae for $a_{\rm align}$ and $a_{\rm disr}$ as functions of the visual extinction $A_{V}$ and the gas density. We find that within a starless core of density $n_{\rm H}\sim 10^{5}\rm cm^{-3}$, grains of size $a<0.25μm$ can be aligned up to $A_{V}\sim 5$ by RATs, whereas micron-sized grains can still be aligned at $A_{V}\sim 50$. The increase in the alignment size with $A_{V}$ can explain the presence of polarization holes observed toward starless cores. For MCs with an embedded protostar, we find that the efficiency of both alignment and rotational disruption increases toward the protostar due to the increasing radiation strength. Such a disruption effect results in the decrease of the polarization degree with $A_{V}$ or emission intensity, which reproduces the popular polarization holes observed toward the location of protostars. Finally, we derive the formula for the maximum $A_{V}$ where grain alignment still exists in a starless core and discuss its potential for constraining grain growth.