论文标题
可变的地平线MPC,带有挥杆脚动力学用于两足动物步行控制
Variable Horizon MPC with Swing Foot Dynamics for Bipedal Walking Control
论文作者
论文摘要
在本文中,我们提出了一种新型的两级变量地平线模型预测控制(VH-MPC),用于两体运动。在此框架中,使用COM状态的反馈,较高级别计算摇摆脚的着陆位置和定时(地平线长度),以稳定质量中心(COM)动力学的不稳定部分。较低的级别考虑了挥杆脚动力学,并生成动态一致的轨迹,以在所需时间尽可能近地降落到所需位置。为此,我们使用了在秋千足空间中投射的机器人动力学的简化模型,该模型考虑了关节扭矩约束以及姿势脚的摩擦锥约束。我们通过在我们的扭矩控制和开源的双头机器人Bolt上实现强大的步行模式来展示我们提出的控制框架的有效性。我们在存在各种干扰和不确定性的情况下报告了广泛的模拟和实际机器人实验。
In this paper, we present a novel two-level variable Horizon Model Predictive Control (VH-MPC) framework for bipedal locomotion. In this framework, the higher level computes the landing location and timing (horizon length) of the swing foot to stabilize the unstable part of the center of mass (CoM) dynamics, using feedback from the CoM states. The lower level takes into account the swing foot dynamics and generates dynamically consistent trajectories for landing at the desired time as close as possible to the desired location. To do that, we use a simplified model of the robot dynamics projected in swing foot space that takes into account joint torque constraints as well as the friction cone constraints of the stance foot. We show the effectiveness of our proposed control framework by implementing robust walking patterns on our torque-controlled and open-source biped robot, Bolt. We report extensive simulations and real robot experiments in the presence of various disturbances and uncertainties.