论文标题
同行协助机器人学习:云机器人系统的数据驱动的协作学习方法
Peer-Assisted Robotic Learning: A Data-Driven Collaborative Learning Approach for Cloud Robotic Systems
论文作者
论文摘要
通过数据驱动的深度学习技术,机器人技术领域正在发生一场技术革命。但是,为每个本地机器人建造数据集很费力。同时,本地机器人之间的数据岛使数据无法协作使用。为了解决这个问题,这项工作介绍了机器人技术中的同行协助机器人学习(PARL),这是受认知心理学和教学法的同伴辅助学习的启发。 PAL使用云机器人系统的框架实现数据协作。在本地语义计算和培训之后,机器人共享数据和模型。云收敛数据并执行增强,集成和传输。最后,将这个较大的共享数据集微调到本地机器人。此外,我们提出DAT网络(数据增强和传输网络)以在PAR中实现数据处理。 DAT网络可以实现来自多本地机器人的数据的增强。我们对机器人(CAR)的简化自动驾驶任务进行实验。 DAT网络在自动驾驶方案的增强方面有了显着改善。随之而来的是,自动驾驶实验结果还表明,PAR可以通过本地机器人的数据协作来改善学习效果。
A technological revolution is occurring in the field of robotics with the data-driven deep learning technology. However, building datasets for each local robot is laborious. Meanwhile, data islands between local robots make data unable to be utilized collaboratively. To address this issue, the work presents Peer-Assisted Robotic Learning (PARL) in robotics, which is inspired by the peer-assisted learning in cognitive psychology and pedagogy. PARL implements data collaboration with the framework of cloud robotic systems. Both data and models are shared by robots to the cloud after semantic computing and training locally. The cloud converges the data and performs augmentation, integration, and transferring. Finally, fine tune this larger shared dataset in the cloud to local robots. Furthermore, we propose the DAT Network (Data Augmentation and Transferring Network) to implement the data processing in PARL. DAT Network can realize the augmentation of data from multi-local robots. We conduct experiments on a simplified self-driving task for robots (cars). DAT Network has a significant improvement in the augmentation in self-driving scenarios. Along with this, the self-driving experimental results also demonstrate that PARL is capable of improving learning effects with data collaboration of local robots.