论文标题
OLED中电子旋转的完全极化
Complete polarization of electronic spins in OLEDs
论文作者
论文摘要
在低温和高磁场下,有机发光二极管(OLED)中的电子和孔旋转变得极化,因此重组优先形成分子三重态激发态物种。对于低设备电流,磁性发光(MEL)完美地遵循玻尔兹曼的激活,这意味着几乎完整的极化结果。随着电流的增加,MEL效应会降低,因为自旋极化因设备内的载体停留时间的减少而抑制。在这些条件下,出现了另一个影响自旋依赖性重组的磁场依赖性过程,这似乎与三胞胎激子的堆积以及与自由电荷载体的相互作用有关。严格来说,在高场上抑制EL并不能证明电子自旋极化。因此,我们直接在发出的双单链液根中直接探测重组的自旋统计量,随着荧光被抑制,这显示出磷光强度的上升。这些材料中的有限自旋轨道耦合产生了电子和孔的有效g因子的显微镜分布,$ΔG$,即Larmor频率的分布,导致电子孔对中的单线 - 三孔混合作为应用场的函数。这对中的$ΔG$效应进一步抑制了单个载体的热自旋极化之外,还抑制了单线表面。由于$ΔG$工艺涉及弱绑定的载体对,而不是自由电子和孔,与热自旋极化相比,这种效果并不显着取决于电流或温度。
At low temperatures and high magnetic fields, electron and hole spins in an organic light-emitting diode (OLED) become polarized so that recombination preferentially forms molecular triplet excited-state species. For low device currents, magnetoelectroluminescence (MEL) perfectly follows Boltzmann activation, implying a virtually complete polarization outcome. As the current increases, the MEL effect is reduced because spin polarization is suppressed by the reduction in carrier residence time within the device. Under these conditions, an additional field-dependent process affecting the spin-dependent recombination emerges, which appears to relate to the build-up of triplet excitons and the interaction with free charge carriers. Suppression of the EL at high fields on its own does not, strictly, prove electronic spin polarization. We therefore probe changes in the spin statistics of recombination directly in a dual singlettriplet emitting OLED, which shows a concomitant rise in phosphorescence intensity as fluorescence is suppressed. Finite spin-orbit coupling in these materials gives rise to a microscopic distribution in effective g factors of electrons and holes, $Δg$, i.e. a distribution in Larmor frequencies, leading to singlet-triplet mixing within the electronhole pair as a function of applied field. This $Δg$ effect in the pair further suppresses singlet-exciton formation in addition to thermal spin polarization of the individual carriers. Since the $Δg$ process involves weakly bound carrier pairs rather than free electrons and holes, in contrast to thermal spin polarization, the effect does not depend significantly on current or temperature.