论文标题
量子跳跃蒙特卡洛简化:阿贝尔对称性
Quantum jump Monte Carlo simplified: Abelian symmetries
论文作者
论文摘要
我们考虑了有限维的开放量子系统的马尔可夫动力学,该系统具有弱的统一对称性,即,当单一对称性在密度矩阵空间上的动作与主操作员统治动力学时,我们的动力学。我们展示了如何通过构造主操作员的弱对称表示:对称的哈密顿量和跳跃操作员仅将对称特征体与固定的特征值相连接的对称性算子,从而在系统的量子随机动力学中编码弱对称性。反过来,这种表示既简化了主操作员的构建,又简化了量子跳跃蒙特卡洛模拟,在这种情况下,对于对称的初始状态,一次在单个对称的eigenspace中支持了系统状态的随机轨迹,仅通过非对称跳跃操作员的作用而改变。我们的结果直接推广到多个阿贝尔弱对称性的情况。
We consider Markovian dynamics of a finitely dimensional open quantum system featuring a weak unitary symmetry, i.e., when the action of a unitary symmetry on the space of density matrices commutes with the master operator governing the dynamics. We show how to encode the weak symmetry in quantum stochastic dynamics of the system by constructing a weakly symmetric representation of the master operator: a symmetric Hamiltonian, and jump operators connecting only the symmetry eigenspaces with a fixed eigenvalue ratio. In turn, this representation simplifies both the construction of the master operator as well as quantum jump Monte Carlo simulations, where, for a symmetric initial state, stochastic trajectories of the system state are supported within a single symmetry eigenspace at a time, which is changed only by the action of an asymmetric jump operator. Our results generalize directly to the case of multiple Abelian weak symmetries.