论文标题

挖掘大地方程以散射数据

Mining the Geodesic Equation for Scattering Data

论文作者

Cheung, Clifford, Shah, Nabha, Solon, Mikhail P.

论文摘要

测量方程在任意重力耦合处编码测试粒子动力学,因此保留了米科夫斯基(PM)扩展中的所有顺序。在这里,我们探讨了什么地测量运动可以告诉我们有关在触及触及效应的存在下的动态散射,例如潮汐失真和对一般相对性的较高衍生化校正。我们在任意质量比时在扰动的地质方程和领先的PM散射幅度之间得出一个代数图。作为示例,我们为某些无限类型的潮汐算子(例如电气或磁性Weyl)计算用于振幅和各向同性量规的大麻,以及具有或不带电荷的重力相互作用的物体的更高衍生化校正。最后,我们提出了一种计算PM扩展中所有阶的测试粒子极限中振幅和各向同性量规的闭合形式表达式的通用方法。

The geodesic equation encodes test-particle dynamics at arbitrary gravitational coupling, hence retaining all orders in the post-Minkowskian (PM) expansion. Here we explore what geodesic motion can tell us about dynamical scattering in the presence of perturbatively small effects such as tidal distortion and higher derivative corrections to general relativity. We derive an algebraic map between the perturbed geodesic equation and the leading PM scattering amplitude at arbitrary mass ratio. As examples, we compute formulas for amplitudes and isotropic gauge Hamiltonians for certain infinite classes of tidal operators such as electric or magnetic Weyl to any power, and for higher derivative corrections to gravitationally interacting bodies with or without electric charge. Finally, we present a general method for calculating closed-form expressions for amplitudes and isotropic gauge Hamiltonians in the test-particle limit at all orders in the PM expansion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源